Affiliation:
1. Université Laval
2. Université Côte d’Azur
Abstract
We report the femtosecond laser writing of meter-long optical waveguides inscribed through the coating of specifically designed optical fibers. In order to improve the material photosensitivity and to ensure non-guiding optical fibers for subsequent laser processing of the waveguiding core, a depressed refractive index core design is implemented by co-doping a large portion of the optical fiber with germanium oxide and fluorine. The enhanced photosensitivity provided by further deuterium loading these fibers allows laser-writing of large refractive index contrast waveguides over wide cross sections. To mitigate the formation of photoinduced color centers causing high propagation losses in the photo-written waveguides, thermal annealing up to 400°C is performed on polyimide-coated laser-written fibers. Although the refractive index contrast decreases, the propagation losses are drastically reduced down to 0.08 dB/cm at 900nm allowing a robust single-mode guiding from visible to near infrared. Our results pave the way towards the development of a new generation of optical fibers and photonic components with arbitrarily complex designs.
Funder
Horizon 2020 Framework Programme
Agence Nationale de la Recherche
Canada Foundation for Innovation
Fonds de recherche du Québec – Nature et technologies
Natural Sciences and Engineering Research Council of Canada
Canada First Research Excellence Fund