Affiliation:
1. The Hong Kong Polytechnic University
2. School of Electronics and Information Technology, Sun Yat-sen University
3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)
Abstract
To solve the cross-sensitivity problem in the dual-parameter optical fiber system, a new type of sensor based on cascaded interference structure is proposed without cross-sensitivity. The design consists of a Michelson interferometer and a Sagnac interferometer based on a high-birefringence suspended core fiber segment. After calculating by the analogous Fast Fourier Transformation (FFT) and filtering by FFT filter, the spectrum of the sensor responds linearly to the change of axial strain and lateral stress. The sensitivity to lateral stress is 3.13 nm/(kPa) in the range from 0 to 1200 Pa and the axial strain is 1.846e−4 (nm·µɛ)−1 from 0 to 4000 µɛ. The capability of the proposed sensor for dual-parameter sensing is also experimentally demonstrated. The precision rate for dual-parameter sensing is as high as 66.7%, reflecting the sensor's usability for simultaneous measurement of axial strain and lateral stress.
Funder
Shenzhen-HK-Macao Science and Technology Plan C Grant
National Natural Science Foundation of China
Guangdong Provincial Pearl River Talents Program
University Grants Committee
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献