Flexible and efficient fabrication of a terahertz absorber by single-step laser direct writing

Author:

Cui Enkang,Wan Zehong,Ke Changjun1,Wu Chao2,Wang DuORCID,Lei ChengORCID

Affiliation:

1. Chinese Academy of Sciences

2. South-Central University for Nationalities

Abstract

Laser direct writing (LDW) is a promising candidate for the fabrication of all-dielectric THz absorbers for its high flexibility and material compatibility. However, multi-step processing or multi-layer materials are required to compensate for the nonideal features of LDW to realize good absorption performance. To further explore the potential of LDW in flexible and cost-effective THz absorber fabrication, in this work, we demonstrate a design method of THz absorbers fully considering and utilizing the characteristics of laser processing. Specifically, we first numerically analyze that by properly combining basic structures processed by single-step LDW, good and adjustable absorption performance can be achieved on a single-layer substrate. Then we experimentally fabricate THz absorbers by processing periodic composite structures, which are combined by grooves and circular holes, on single-layer doped silicon using LDW. Experimental results show that our method can fabricate THz absorbers at a speed of 3.3 mm2/min with an absorptivity above 90% over a broadband of 1.8-3 THz. Our method provides a promising solution for the flexible and efficient fabrication of all-dielectric broadband THz absorbers.

Funder

National Natural Science Foundation of China

The Key Research and Development Program of Hubei province

Independent Scientific Research

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3