Affiliation:
1. Northwestern Polytechnical University
Abstract
Phase unwrapping is a crucial step in obtaining the final physical information in the field of optical metrology. Although good at dealing with phase with discontinuity and noise, most deep learning-based spatial phase unwrapping methods suffer from the complex model and unsatisfactory performance, partially due to simple noise type for training datasets and limited interpretability. This paper proposes a highly efficient and robust spatial phase unwrapping method based on an improved SegFormer network, SFNet. The SFNet structure uses a hierarchical encoder without positional encoding and a decoder based on a lightweight fully connected multilayer perceptron. The proposed method utilizes the self-attention mechanism of the Transformer to better capture the global relationship of phase changes and reduce errors in the phase unwrapping process. It has a lower parameter count, speeding up the phase unwrapping. The network is trained on a simulated dataset containing various types of noise and phase discontinuity. This paper compares the proposed method with several state-of-the-art deep learning-based and traditional methods in terms of important evaluation indices, such as RMSE and PFS, highlighting its structural stability, robustness to noise, and generalization.
Funder
Natural Science Basic Research Program of Shaanxi Province
National Postdoctoral Program for Innovative Talents
Equipment Development Department Rapid Support Project
Natural Science Foundation of Ningbo Municipality
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献