Affiliation:
1. The University of Arizona
2. Wu-Tsai Neuroscience Institute, Stanford University
Abstract
Two-photon light-sheet fluorescence microscopy enables high-resolution imaging of neural activity in brain tissue at a high frame rate. Traditionally, light-sheet microscopy builds up a 3D stack by multiple depth scans with uniform spatial intervals, which substantially limits the volumetric imaging speed. Here, we introduce the depth random-access light-sheet microscopy, allowing rapid switching scanning depth for light-sheet imaging. With a low-cost electrically tunable lens and minimum modification of an existing two-photon light-sheet imaging instrument, we demonstrated fast random depth hopping light-sheet imaging at 100 frames per second in the live brain slice. Through depth random-access, calcium activities for an astrocyte were recorded on four user-selected detection planes at a refreshing rate of 25 Hz.
Funder
National Institute of Biomedical Imaging and Bioengineering
National Science Foundation
GG Gift Fund
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献