Abstract
Digital micromirror device (DMD)-based 4f-systems, a type of coherent optical information processing system, have become a powerful tool for optical convolutional neural networks taking advantage of their fast modulation speed and high-resolution capability. However, proper high bit-depth image information processing remains challenging due to the optical diffractions that arise from the binary nature of DMD operation. In this paper, we first characterize the diffraction phenomena that cause irradiance defects, namely the nonlinear grayscale and unintended dark lines. Then to resolve the issues, we propose a DMD operation method and a modified structure of the 4f-system based on blazed diffraction grating theory and numerical calculation of the Rayleigh–Sommerfeld propagation model. As a demonstration, we implement high bit-depth image information processing with an optimized optical 4f-system using DMDs and a collimated coherent light source.
Funder
Institute of Information & communications Technology Planning & Evaluation
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献