Mueller matrix analysis of spun wave plate for arbitrary SOP conversion

Author:

Huang Yuhao1ORCID,Xia RanORCID

Affiliation:

1. The University of Hong Kong

Abstract

The developments in polarized light have spawned a multitude of novel applications in optical fiber systems, but the design and fabrication of practical fiber wave plates with high degree of integration still remain a challenging issue. To address this problem, an all-fiber spun wave plate (SWP) for arbitrary state of polarization (SOP) conversion is proposed in this work, and its principle is analyzed with Mueller matrix. Simulations are conducted to exhibit the arbitrary SOP conversion capability of the proposed SWP, and two key parameters, including the maximum spinning rate (ξmax) and linear birefringence (δ), are investigated for efficient conversion of desired SOP. Different functions to increase the spinning rate ξ from 0 to ξmax, computational efficiency and accuracy related to N are discussed in detail. Furthermore, the depolarization effect caused by retardation of SWP is also considered. The results of this research suggest that the proposed SWP exhibits promising performance in arbitrary SOP conversion, and the meticulous analysis of the numerical computation, design, and implementation of SWP presented in this work can provide novel insights for devloping fiber wave plates.

Funder

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3