Affiliation:
1. Shanghai Institute of Microsystem and Information Technology
2. CAS Center for Excellence in Superconducting Electronics
3. University of Chinese Academy of Sciences
4. Hainan University
Abstract
Mid-infrared (MIR) single-photon detection is emerging as an important technology for various applications. Superconducting nanowire single photon detectors (SNSPDs) fabricated with superconducting films with energy gaps of a few meV are natural broadband single-photon detectors. Recently, extending SNSPDs’ operation wavelengths into the MIR region is highly attractive. γ-Nb4N3 has a reduced N content and lower energy gap than the commonly used δ-NbN, making SNSPDs based on γ-Nb4N3 film more sensitive to low energy photons. We report on a Nb4N3-SNSPD based on 62-nm wide nanowire, with an optical absorption enhancement design and an optimized device package for efficient ZBLAN fiber coupling and dark count filtering. The developed device has a unity intrinsic detection efficiency (IDE) in the 1.5–4 µm wavelength region, and the device detection efficiency at 2.95 µm was measured to be 32.5%, with an uncertainty of 12.7%. Furthermore, we reduced the device geometry, and measured 3–10 µm photon response of a device based on 5-nm film and 42-nm nanowire, with an IDE of 95%, 81%, 40%, and 6% for 4.8, 6, 8, and 10 µm, respectively.
Funder
Key Scientific Instrument and Equipment Development Projects of the Chinese Academy of Sciences
Shanghai Science and Technology Development Foundation
Science and Technology Commission of Shanghai Municipality
Youth Innovation Promotion Association of the Chinese Academy of Sciences
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献