Affiliation:
1. North University of China
2. Huazhong University of Science and Technology
Abstract
FBG array sensors have been widely used in the multi-point monitoring of large structures due to their excellent optical multiplexing capability. This paper proposes a cost-effective demodulation system for FBG array sensors based on a Neural Network (NN). The stress variations applied to the FBG array sensor are encoded by the array waveguide grating (AWG) as transmitted intensities under different channels and fed to an end-to-end NN model, which receives them and simultaneously establishes a complex nonlinear relationship between the transmitted intensity and the actual wavelength to achieve absolute interrogation of the peak wavelength. In addition, a low-cost data augmentation strategy is introduced to break the data size bottleneck common in data-driven methods so that the NN can still achieve superior performance with small-scale data. In summary, the demodulation system provides an efficient and reliable solution for multi-point monitoring of large structures based on FBG array sensors.
Funder
Scientific Research Starting Foundation of Hainan University
Major Science and Technology Project of Hainan Province
National Key Technology Support Program
Wuhan National Laboratory for Optoelectronics
Major Science and Technology Program of Haikou City
Natural Science Foundation of Hainan Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献