Three-dimensional reconstruction method for layered structures based on a frequency modulated continuous wave terahertz radar

Author:

Xue KailiangORCID,Zhang Wenna,Song Jialin,Wang Zhaoba,Jin Yong,Nandi Asoke K.1,Chen YouxingORCID

Affiliation:

1. Brunel University London

Abstract

The feasibility of employing a continuous-wave terahertz detection system for non-contact and non-destructive testing (NDT) in multi-layered bonding structures is assessed in this study. The paper introduces the detection principle of terahertz frequency modulated continuous wave (FMCW) radar and outlines the two-dimensional (2D) scanning platform, which integrates optical lenses, three linear actuators, a control platform, and data acquisition units. Experimental results on two types of insulation with prefabricated defects demonstrate the capability of terahertz waves for transparent inspection imaging. These results confirm the viability of terahertz FMCW detection technology as an advanced NDT tool for multi-layered bonding structures. However, the inherent limitations of terahertz wavelength and hardware systems pose challenges in discriminating reflection peaks on upper and lower surfaces. To address this issue, a local adaptive empirical wavelet coefficient modal decomposition (LAEWCMD) method is proposed to enhance the longitudinal discrimination ability of terahertz detection. The proposed method involves segmenting the 2D terahertz detection image into regions to differentiate between defective and non-defective areas. Continuous wavelet transforms (CWT) are then applied to the range signals of each region to derive continuous wavelet coefficients (CWCs). Subsequently, empirical mode decomposition (EMD) is performed on the CWCs to decompose them into intrinsic mode functions (IMFs) and residual signals. The 1st IMF is utilized for three-dimensional (3D) reconstruction, and the regions are fused to generate the final output. The effectiveness of the proposed method is validated on aircraft thermal protection structures (TPS), achieving high-precision 3D reconstruction. This offers a novel approach for the application of terahertz computed tomography imaging and NDT.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Shanxi Returned Scholarship Council

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3