Deep learning-based method for non-uniform motion-induced error reduction in dynamic microscopic 3D shape measurement

Author:

Tan Ji1ORCID,Su Wenqing12,He Zhaoshui13ORCID,Huang Naixing1,Di Jianglei1ORCID,Zhong Liyun1,Bai Yulei12ORCID,Dong Bo12ORCID,Xie Shengli134

Affiliation:

1. Guangdong University of Technology

2. Key Laboratory for IoT Intelligent Information Processing and System Integration of Ministry of Education

3. Guangdong Key Laboratory of IoT Information Technology

4. Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing

Abstract

The non-uniform motion-induced error reduction in dynamic fringe projection profilometry is complex and challenging. Recently, deep learning (DL) has been successfully applied to many complex optical problems with strong nonlinearity and exhibits excellent performance. Inspired by this, a deep learning-based method is developed for non-uniform motion-induced error reduction by taking advantage of the powerful ability of nonlinear fitting. First, a specially designed dataset of motion-induced error reduction is generated for network training by incorporating complex nonlinearity. Then, the corresponding DL-based architecture is proposed and it contains two parts: in the first part, a fringe compensation module is developed as network pre-processing to reduce the phase error caused by fringe discontinuity; in the second part, a deep neural network is employed to extract the high-level features of error distribution and establish a pixel-wise hidden nonlinear mapping between the phase with motion-induced error and the ideal one. Both simulations and real experiments demonstrate the feasibility of the proposed method in dynamic macroscopic measurement.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Key Areas of Research and Development Plan Project of Guangdong

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3