Enhancement of the frequency conversion film imaging effect based on a cascade material fusion method

Author:

Zhou Jianwei,Cai Hongxing,Ren Yu,Li Shuang,Jiang ChunxuORCID,Lv Zhong,Wang Tingting,Qu Guannan,Tan YongORCID,Shi JingORCID,Xin Minsi,Miao Xinhui,Liu Quansheng

Abstract

Frequency conversion imaging technology can provide an effective way for infrared detection against the limitations of conventional infrared detectors, such as expense and cooling requirements, but the converted luminescence intensity of frequency conversion materials limits the application of this technology. In this paper, a cascade material (CM) fusion method is proposed to improve the conversion luminous intensity and thus enhance the frequency conversion imaging effect at 1550 nm near infrared (NIR) excitation. First, we derived from the energy level transition mechanism of CM that the CM fusion method can achieve three excitations of substrate materials (SMs). It can improve the conversion luminescence intensity of SM in CM. Then, we experimentally prepared CM and SM films and simultaneously measured the frequency conversion imaging effect of the two films at 1550 nm NIR excitation. It was found that the weight ratio of doped material (DM) to SM affects the imaging enhancement of CM films. Therefore, we compared the imaging grayscale value intensity of CM films with different weight ratios under the same detection conditions. Finally, it was concluded that the best enhancement of frequency conversion imaging was achieved with a DM to SM weight ratio of 0.25 for this mechanism. The enhancement was about 3.11 times compared to SM films.

Funder

Natural Science Foundation of Jilin Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3