Small lidar ratio of dust aerosol observed by Raman-polarization lidar near desert sources

Author:

Huang Zhongwei1,Li Meishi1,Bi Jianrong1,Shen Xingtai1,Zhang Shuang1,Liu Qiantao1

Affiliation:

1. Lanzhou University

Abstract

Previous studies have shown that the lidar ratio has a significant influence on the retrieval of the aerosol extinction coefficient via the Fernald method, leading to a large uncertainty in the evaluation of dust radiative forcing. Here, we found that the lidar ratios of dust aerosol were only 18.16 ± 14.23sr, based on Raman-polarization lidar measurements in Dunhuang (94.6°E, 40.1°N) in April of 2022. These ratios are much smaller than other reported results (∼50 sr) for Asian dust. This finding is also confirmed by some previous results from lidar measurements under different conditions for dust aerosols. The particle depolarization ratio (PDR) at 532 nm and color ratio (CR, 1064 nm/532 nm) of dust aerosols are0.28 ± 0.013 and 0.5-0.6, respectively, indicating that extremely fine nonspherical particles exist. In addition, the dust extinction coefficients at 532 nm range from2 × 10−4 to 6 × 10−4m−1for such small lidar ratio particles. Combining lidar measurements and model simulation by the T-matrix method, we further reveal that the reason for this phenomenon is mainly due to the relatively small effective radius and weak light absorption of dust particles. Our study provides a new insight into the wide variation in the lidar ratio for dust aerosols, which helps to better explain the impacts of dust aerosols on the climate and environment.

Funder

Gansu Provincial Science and Technology Innovative Talent Program: High-level Talent and Innovative Team Special Project

Fundamental Research Funds for the Central Universities

111 Project

the Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3