Fully refractive telecentric f-theta microscope based on adaptive elements for 3D raster scanning of biological tissues

Author:

Wang Wenjie,Schmidt KatharinaORCID,Wapler Matthias C.12ORCID,Wallrabe Ulrike1ORCID,Czarske Jürgen W.3,Koukourakis Nektarios

Affiliation:

1. University of Freiburg

2. Otto von Guericke University Magdeburg

3. TU Dresden

Abstract

Various techniques in microscopy are based on point-wise acquisition, which provides advantages in acquiring sectioned images, for example in confocal or two-photon microscopy. The advantages come along with the need to perform three-dimensional scanning, which is often realized by mechanical movement achieved by stage-scanning or piezo-based scanning in the axial direction. Lateral scanning often employs galvo-mirrors, leading to a reflective setup and hence to a folded beam path. In this paper, we introduce a fully refractive microscope capable of three-dimensional scanning, which employs the combination of an adaptive lens, an adaptive prism, and a tailored telecentric f-theta objective. Our results show that this microscope is capable to perform flexible three-dimensional scanning, with low scan-induced aberrations, at a uniform resolution over a large tuning range of X=Y=6300 μm and Z=480 μm with only transmissive components. We demonstrate the capabilities at the example of volumetric measurements on the transgenic fluorescence of the thyroid of a zebrafish embryo and mixed pollen grains. This is the first step towards flexible aberration-free volumetric smart microscopy of three-dimensional samples like embryos and organoids, which could be exploited for the demands in both lateral and axial dimensions in biomedical samples without compromising image quality.

Funder

Deutsche Forschungsgemeinschaft

China Scholarship Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3