Spatial-spectral resolution tunable snapshot imaging spectrometer: analytical design and implementation

Author:

Ji Yiqun,Tan Fenli,Zhao Shijia,Feng Anwei,Zeng Chenxin,Liu Hongjun1,Wang Chinhua

Affiliation:

1. National Inspection and Testing Center for Ophthalmic Optics Products

Abstract

A snapshot imaging spectrometer is a powerful tool for dynamic target tracking and real-time recognition compared with a scanning imaging spectrometer. However, all the current snapshot spectral imaging techniques suffer from a major trade-off between the spatial and spectral resolutions. In this paper, an integral field snapshot imaging spectrometer (TIF-SIS) with a continuously tunable spatial-spectral resolution and light throughput is proposed and demonstrated. The proposed TIF-SIS is formed by a fore optics, a lenslet array, and a collimated dispersive subsystem. Theoretical analyses indicate that the spatial-spectral resolution and light throughput of the system can be continuously tuned through adjusting the F number of the fore optics, the rotation angle of the lenslet array, or the focal length of the collimating lens. Analytical relationships between the spatial and spectral resolutions and the first-order parameters of the system with different geometric arrangements of the lenslet unit are obtained. An experimental TIF-SIS consisting of a self-fabricated lenslet array with a pixelated scale of 100×100 and a fill factor of 0.716 is built. The experimental results show that the spectral resolution of the system can be steadily improved from 4.17 to 0.82 nm with a data cube (N x ×N y ×N λ ) continuously tuned from 35×35×36 to 40×40×183 in the visible wavelength range from 500 to 650 nm, which is consistent with the theoretical prediction. The proposed method for real-time tuning of the spatial-spectral resolution and light throughput opens new possibilities for broader applications, especially for recognition of things with weak spectral signature and biomedical investigations where a high light throughput and tunable resolution are needed.

Funder

National Natural Science Foundation of China

National Defense Basic Scientific Research Program of China

Natural Science Foundation of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

National Inspection and Testing Center for Ophthalmic Optics Products

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3