Portable, smartphone-linked, and miniaturized photonic resonator absorption microscope (PRAM Mini) for point-of-care diagnostics

Author:

Khemtonglang Kodchakorn1ORCID,Liu Weinan1ORCID,Lee Hankeun1,Wang Weijing1,Li Siyan1,Li Zhao Yuan1,Shepherd Skye1,Yang Yihong12,Diel Diego G.3,Fang Ying1,Cunningham Brian T.1

Affiliation:

1. University of Illinois at Urbana-Champaign

2. Zhejiang University-University of Illinois Urbana-Champaign Institute

3. Cornell University

Abstract

We report the design, development, and characterization of a miniaturized version of the photonic resonator absorption microscope (PRAM Mini), whose cost, size, and functionality are compatible with point-of-care (POC) diagnostic assay applications. Compared to previously reported versions of the PRAM instrument, the PRAM Mini components are integrated within an optical framework comprised of an acrylic breadboard and plastic alignment fixtures. The instrument incorporates a Raspberry Pi microprocessor and Bluetooth communication circuit board for wireless control and data connection to a linked smartphone. PRAM takes advantage of enhanced optical absorption of ∼80 nm diameter gold nanoparticles (AuNP) whose localized surface plasmon resonance overlaps with the ∼625 nm resonant reflection wavelength of a photonic crystal (PC) surface. When illuminated with wide-field low-intensity collimated light from a ∼617 nm wavelength red LED, each AuNP linked to the PC surface results in locally reduced reflection intensity, which is visualized by observing dark spots in the PC-reflected image with an inexpensive CMOS image sensor. Each AuNP in the image field of view can be easily counted with digital resolution. We report upon the selection of optical/electronic components, image processing algorithm, and contrast achieved for single AuNP detection. The instrument is operated via a wireless connection to a linked mobile device using a custom-developed software application that runs on an Android smartphone. As a representative POC application, we used the PRAM Mini as the detection instrument for an assay that measures the presence of antibodies against SARS-CoV-2 infection in cat serum samples, where each dark spot in the image represents a complex between one immobilized viral antigen, one antibody molecule, and one AuNP tag. With dimensions of 23 × 21 × 10 cm3, the PRAM Mini offers a compact detection instrument for POC diagnostics.

Funder

National Institute of Health

National Science Foundation

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3