Affiliation:
1. The Sixth People’s Hospital of Shenzhen
Abstract
Characterization of the microenvironment features of tumors, such as its microstructures, biomolecular metabolism, and functional dynamics, may provide essential pathologic information about the tumor, tumor margin, and adjacent normal tissue for early and intraoperative diagnosis. However, it can be particularly challenging to obtain faithful and comprehensive pathological information simultaneously from unperturbed tissues due to the complexity of the microenvironment in organisms. Super-multiplex nonlinear optical imaging system emerged and matured as an attractive tool for acquisition and elucidation of the nonlinear properties correlated with tumor microenvironment. Here, we introduced a nonlinear effects-based multidimensional optical imaging platform and methodology to simultaneously and efficiently capture contrasting and complementary nonlinear optical signatures of freshly excised human skin tissues. The qualitative and quantitative analysis of autofluorescence (FAD), collagen fiber, and intracellular components (lipids and proteins) illustrated the differences about morphological changes and biomolecular metabolic processes of the epidermis and dermis in different skin carcinogenic types. Interpretation of multi-parameter stain-free histological findings complements conventional H&E-stained slides for investigating basal cell carcinoma and pigmented nevus, validates the platform’s versatility and efficiency for classifying subtypes of skin carcinoma, and provides the potential to translate endogenous molecule into biomarker for assisting in rapid cancer screening and diagnosis.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Shenzhen Talent Innovation Project
Shenzhen Key Projects
Shenzhen International Cooperation Project
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献