Photonic spin Hall effect in a graphene-incorporated quasi-PT symmetric system and the miniaturization of nanophotonic devices

Author:

Dong Peng,Cheng Jie1ORCID

Affiliation:

1. Nanjing University of Posts and Telecommunications

Abstract

By inserting the monolayer graphene between the balanced gain and loss layers, the graphene-incorporated quasi-parity-time (PT) symmetric structure is established. In this contribution, the introduction of graphene provides a new degree of freedom to manipulate the optical performance as well as the photonic spin Hall effect (SHE). The coherent perfect absorption (CPA)-laser mode still remains in the graphene-incorporated quasi-PT symmetric system, and the spin shift of transmitted light can be significantly enhanced (i.e., up to its upper limitation) in the vicinity of CPA-laser mode, which is 18 times larger than the value of a simple PT symmetric structure. In addition, the excitation of the CPA-laser mode and the huge spin shift of transmitted light can be achieved with the thin gain/loss layers, which will be conducive to the miniaturization of nanophotonic devices based on the photonic SHE in the future.

Funder

Natural Science Foundation of Nanjing Vocational University of Industry Technology

National Natural Science Foundation of China

Qinglan Project of Jiangsu Province of China

Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3