Study of particle equilibrium based on the combination of light-actuated AC electroosmosis and light-actuated dielectrophoresis

Author:

Zhao JiaweiORCID,Chen Bo,Gan Chunyuan,Huang Shunxiao,Xiong Hongyi,Ye Jingwen,Zhang Peng,Feng Lin1

Affiliation:

1. Beihang University

Abstract

Optoelectronic tweezers (OETs) represent a flexible, high-throughput method for manipulating micro/nano particles or cells. This technique involves not only light-actuated dielectrophoresis (LDEP) but also light-actuated AC electroosmosis (LACE), which occurs concurrently in OETs devices. Despite this, the combination of negative LDEP and LACE has been relatively unexplored in previous research. To this end, particle equilibrium in OETs devices under the combined influence of negative LDEP and LACE was hereby proposed for what we believe is the first time. The findings revealed that particles experiencing negative dielectrophoresis encountered opposing forces from LDEP and LACE, reaching equilibrium near the light pattern. The location of the equilibrium point was frequency-dependent. The research further demonstrated the rapid differentiation between individual particles and adherent particles by leveraging the distinct equilibrium point positions. These phenomena were corroborated through numerical simulations, which showed a strong correlation between the theoretical analysis results and the experimental data. Overall, the particle equilibrium phenomenon in OET systems exhibits high stability and holds promising potential for future applications in particle or cell sorting and patterning two-dimensional structures.

Funder

Beijing Municipal Fund for Distinguished Young Scholars

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3