Optimizing two-dimensional polarization-diversity metagrating couplers for silicon photonics

Author:

Tu Xin1ORCID,Wu Yiheng1,Huang Tianye1,Zhang Jing1,Ping Perry Shum2

Affiliation:

1. China University of Geosciences

2. Southern University of Science and Technology

Abstract

Polarization-diversity couplers are promising industrially scalable optical devices that can couple optical signals with unknown polarization states into silicon photonic chips. Here we propose a novel, to the best of our knowledge, two-dimensional (2D) metagrating coupler (MGC) for the polarization-diversity system, which improves its coupling efficiency for both polarizations. Compared with the previously reported 2D grating couplers (GCs) with identical grating cells, the proposed apodized design gradually changes the aspect ratio and orientation angles of the elliptical patterns simultaneously. This 2D array of the varied grating cells modulates the diffracted mode field patterns and phases locally, and achieves a better overlap with the Gaussian fiber modes for both polarizations. The peak coupling loss (PCL) for the S-polarized and P-polarized light are 1.6 d B and 2.7 d B , respectively. The calculated polarization dependent loss is lower than 0.2 dB from 1522 nm to 1540 nm. The device is robust to the fabrication tolerance and fiber misalignment. The simulated fabrication tolerance analysis show that the etch depth error of ±20 nm results in less than 0.3 dB and 0.1 dB PCL drop, while the grating cell feature size error of ± 40 n m results in less than 0.6 dB and 0.2 dB PCL drop for both types of polarization light, respectively. The fiber misalignment should be within the range from 2 µ m to + 2 µ m in two perpendicular directions, and the coupling angle deviation should be within the range from 3 to + 3 , in order to assure 0.5 dB penalty loss for both polarizations. The performance of the design is insensitive to the mask misalignments. To assure 0.5 dB penalty loss for both polarizations, Δ θ is suggested to be within the range from 3 to + 3 .

Funder

National Natural Science Foundation of China

Wuhan Municipal Science and Technology Bureau

Fundamental Research Funds for the Central Universities

The Experimental Technology Research Funds

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3