Improved performance of a fiber-optic hydrogen sensor based on a controllable optical heating technology

Author:

Dai Jixiang1,Yin Kai,Chen Zhangning,Hu WenbinORCID,Yang Minghong,Fu Jinghua,Sun Xuxu2,Chen Xianfeng2

Affiliation:

1. Foshan Xianhu Laboratory of Advanced Energy Science and Technology

2. Wuhan University of Technology

Abstract

A novel, to the best of our knowledge, and compact fiber-optic hydrogen sensor based on light intensity demodulation and controllable optical heating technology is proposed and experimentally investigated. This system employs three photodetectors for optic signal transformation. The first PD is used to receive a little fraction of the amplified spontaneous emission (ASE) for calibration, and the second PD is utilized to detect optic signal reflected by a single mode fiber deposited with WO3-Pd2Pt-Pt composite film. The last PD is utilized to receive the optical power reflected by the short fiber Bragg grating (SFBG) with a central wavelength located in a steep wavelength range (the intensity decreases approximately linearly with the increase of the wavelength) of the ASE light source. A 980 nm laser and proportion integration differentiation (PID) controller were employed to ensure the hydrogen sensitive film working at an operating temperature of 60°C. This sensing system can display a quick response time of 0.4 s toward 10,000 ppm hydrogen in air. In addition, the detection limit of 5 ppm in air can be achieved with this sensing system. The stability of this sensor can be greatly enhanced with a controllable optical heating system, which can greatly promote its potential application in various fields.

Funder

National Key Research and Development Program of China

Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory

National Science Found for Distinguished Young Scholars of China

NSFC

Hubei Province Unveiling Project

Hubei Province Production Safety Project

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3