LocNet: deep learning-based localization on a rotating point spread function with applications to telescope imaging

Author:

Dai Lingjia1,Lu Mingda1,Wang Chao23ORCID,Prasad Sudhakar4,Chan Raymond15

Affiliation:

1. City University of Hong Kong

2. Southern University of Science and Technology

3. National Centre for Applied Mathematics Shenzhen

4. University of Minnesota

5. Hong Kong Centre for Cerebro-Cardiovascular Health Engineering

Abstract

Three-dimensional (3D) point source recovery from two-dimensional (2D) data is a challenging problem with wide-ranging applications in single-molecule localization microscopy and space-debris localization telescops. Point spread function (PSF) engineering is a promising technique to solve this 3D localization problem. Specifically, we consider the problem of 3D localization of space debris from a 2D image using a rotating PSF where the depth information is encoded in the angle of rotation of a single-lobe PSF for each point source. Instead of applying a model-based optimization, we introduce a convolution neural network (CNN)-based approach to localize space debris in full 3D space automatically. A hard sample training strategy is proposed to improve the performance of CNN further. Contrary to the traditional model-based methods, our technique is efficient and outperforms the current state-of-the-art method by more than 11% in the precision rate with a comparable improvement in the recall rate.

Funder

University Grants Committee

National Natural Science Foundation of China

Shenzhen Fundamental Research Program

City University of Hong Kong

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Poissonian Image Restoration Via the $$L_1/L_2$$-Based Minimization;Journal of Scientific Computing;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3