Respiratory fabric sensor based on the side luminescence and photosensitivity mechanism of polymer optical fibers

Author:

Zhang Meiling1,Zhao Meiling1,Zhang Cheng21,Sun Zheng1,Zhao Xiaoxue1,Miao Changyun1,Wang Zhangang1

Affiliation:

1. Tiangong University

2. Tianjin Key Laboratory of Optoelectronic Detection Technology and System

Abstract

It is significant to monitor respiration conveniently and in real time for people suffering from respiratory diseases. Polymer optical fibers (POFs) have the advantages of flexibility and light weight, which is highly desirable for wearable respiratory monitoring. However, in most current applications, the POFs are stitched on the textile substrates in the form of macro-bending. This method is complex to fix the bending with certain curvatures and uncomfortable compared with the POF sensors woven into the textile. In this paper, a respiratory fabric sensor based on the side luminescence and photosensitivity mechanism of POF is proposed and demonstrated. The 750µm-diameter POFs were woven into a fabric as warp and laser marking was performed at their designed positions to make them release or couple light. The spacing change between the POFs caused by the respiratory movement accordingly makes the light intensity change in the photosensitive fiber. We chose four fabric widths (10cm, 8cm, 6cm and 4cm) and four fabric weaves (plain weave, honeycomb weave, 1/3 right twill weave and 8/3 warp satin weave) to implement the full-factor experiment for exploring the measurement effect of the respiratory fabric sensor. The result is that the fabric with width of 4cm and weave of 8/3 warp satin is optimal. The calm and deep respiratory tests of the human chest and abdomen in sitting and standing posture were carried out and the test performance of the fabric sensor is almost comparable to that of the medical monitor. The proposed respiratory fabric sensor is comfortable, easily woven and high in precision, which is expected to realize industrialized scale production.

Funder

Tianjin Municipal Special Foundation for Key Cultivation of China

Enterprise Entrusted Projects

Tianjin Science and Technology Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3