All-parameter calibration method of the on-orbit multi-view dynamic photogrammetry system

Author:

Liu Qilin12,Dong Mingli2,Sun Peng2,Yan Bixi2,Wang Jun2,Zhu Lianqing12

Affiliation:

1. Changchun University of Science and Technology

2. Beijing Information Science & Technology University

Abstract

Photogrammetry (PG) can present accurate data to evaluate the functional performance of large space structures. For camera calibration and orientation, the On-orbit Multi-view Dynamic Photogrammetry System (OMDPS) lacks appropriate spatial reference data. A multi-data fusion calibration method for all parameters for this kind of system is proposed in this paper as a solution to this issue. Firstly, a multi-camera relative position model is developed to solve the reference camera position unconstrained problem in the full-parameter calibration model of the OMDPS in accordance with the imaging model of stars and scale bar targets. Subsequently, the problem of adjustment failure and inaccurate adjustment in the multi-data fusion bundle adjustment is solved using the two-norm matrix and the weight matrix to adjust the Jacobian matrix with respect to all system parameters (e.g., camera interior parameters (CIP), camera exterior parameters (CEP), and lens distortion parameters (LDP)). Finally, all system parameters can be optimized simultaneously using this algorithm. In the actual data ground-based experiment, 333 spatial targets are measured using the V-star System (VS) and OMDPS. Taking the measurement of VS as the true value, the measurement results of OMDPS indicated that the in-plane Z-direction target coordinates root-mean-square error (RMSE) is less than 0.0538 mm and the Z-direction RMSE is less than 0.0428 mm. Out-of-plane Y-direction RMSE is less than 0.1514 mm. The application potential of the PG system for on-orbit measurement tasks is demonstrated through the actual data ground-based experiment.

Funder

National Natural Science Foundation of China

Scientific Research Project of Beijing Educational Committee

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Reference16 articles.

1. In-orbit assembly mission for the Space Solar Power Station

2. Optimization thermal design method for space cameras based on thermo-optical analysis and Taguchi method

3. Thermal/vacuum measurements of the Herschel space telescope by close-range photogrammetry;Parian,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3