Theoretical and experimental determination of the confocal function of OCT systems for accurate calculation of sample optical properties

Author:

Buist GijsORCID,Debiasi MaddalenaORCID,Amelink Arjen1ORCID,de Boer Johannes F.ORCID

Affiliation:

1. Netherlands Organisation for Applied Scientific Research

Abstract

The attenuation coefficient of biological tissue could serve as an indicator of structural and functional changes related to the onset or progression of disease. Optical coherence tomography (OCT) provides cross sectional images of tissue up to a depth of a few millimeters, based on the local backscatter properties. The OCT intensity also depends on the confocal function, which needs to be characterised to determine correctly the exponential decay of the intensity based on Lambert-Beer. We present a model for the confocal function in scattering media based on the illumination with a Gaussian beam and the power transfer into a single mode fibre (SMF) of the backscattered light for an incoherently back scattered Gaussian beam using the Huygens-Fresnel principle and compare that model with the reflection from a mirror. We find that, contrary to previous literature, the confocal functions characterised by the Rayleigh range in the two models are identical. Extensive OCT focus series measurements on a mirror, Spectralon and Intralipid dilutions confirm our model, and show that for highly scattering samples the confocal function characterised by the Rayleigh range becomes depth dependent. From the diluted Intralipid measurements the attenuation coefficients are extracted using a singly scatter model that includes the previously established confocal function. The extracted attenuation coefficients were in good agreement for weakly scattering samples (μ s  < 2 mm−1).

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3