Optimizing the OCTA layer fusion option for deep learning classification of diabetic retinopathy

Author:

Ebrahimi BehrouzORCID,Le David,Abtahi MansourORCID,Dadzie Albert K.,Lim Jennifer I.1,Chan R. V. Paul1,Yao Xincheng1ORCID

Affiliation:

1. University of Illinois at Chicago

Abstract

The purpose of this study is to evaluate layer fusion options for deep learning classification of optical coherence tomography (OCT) angiography (OCTA) images. A convolutional neural network (CNN) end-to-end classifier was utilized to classify OCTA images from healthy control subjects and diabetic patients with no retinopathy (NoDR) and non-proliferative diabetic retinopathy (NPDR). For each eye, three en-face OCTA images were acquired from the superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris (CC) layers. The performances of the CNN classifier with individual layer inputs and multi-layer fusion architectures, including early-fusion, intermediate-fusion, and late-fusion, were quantitatively compared. For individual layer inputs, the superficial OCTA was observed to have the best performance, with 87.25% accuracy, 78.26% sensitivity, and 90.10% specificity, to differentiate control, NoDR, and NPDR. For multi-layer fusion options, the best option is the intermediate-fusion architecture, which achieved 92.65% accuracy, 87.01% sensitivity, and 94.37% specificity. To interpret the deep learning performance, the Gradient-weighted Class Activation Mapping (Grad-CAM) was utilized to identify spatial characteristics for OCTA classification. Comparative analysis indicates that the layer data fusion options can affect the performance of deep learning classification, and the intermediate-fusion approach is optimal for OCTA classification of DR.

Funder

National Eye Institute

Research to Prevent Blindness

Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3