Path sampling and integration method to calculate speckle patterns

Author:

Song Chunyuan1,Gao Jingjing1,Gan Yu1,Zhang Xuyu2,Han Shensheng13,Wang Lihong V.4ORCID,Liu Honglin1ORCID

Affiliation:

1. University of Chinese Academy of Science

2. University of Shanghai for Science and Technology

3. University of Chinese Academy of Sciences

4. California Institute of Technology

Abstract

A stable speckle pattern is generated when a coherent beam illuminates a stationary scattering medium that contains numerous scatterers with fixed positions. To date, there has been no valid method to the best of our knowledge for calculating the speckle pattern of a macro medium with a large number of scatterers. Here, a new method based on possible path sampling with corresponding weights and coherent superposition is presented for the simulation of optical field propagation in a scattering medium and output speckle patterns. In this method, a photon is launched onto a medium with fixed scatterers. It propagates in one direction; upon collision with a scatterer, its direction is updated. The procedure is repeated until it exits the medium. A sampled path is obtained in this manner. By repeatedly launching photons, numerous independent optical paths can be sampled. A speckle pattern, corresponding to the probability density of the photon, is formed by the coherent superposition of sufficiently sampled path lengths ending on a receiving screen. This method can be used in sophisticated studies of the influences of medium parameters, motion of scatterers, sample distortions on speckle distributions, and morphological appearances. It can be used for micro-examination of optical fields in scattering media and may inspire new methods and techniques for non-invasive precision detection and diagnosis of scattering media.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3