Photo-physical characteristics of color N3-center in diamond studied via UV femtosecond-laser pumped luminescence

Author:

Kudryashov SergeyORCID,Danilov Pavel,Smirnov Nikita,Pakholchuk PetrORCID,Skorikov Mikhail,Smetanin IgorORCID,Minh Pham Hong1,Duong Pham Van1

Affiliation:

1. Vietnam Academy of Science and Technology

Abstract

Micro-joule UV-range (350–415 nm) femtosecond-laser pulses generated via frequency-doubled parametric conversion of 525-nm 150-fs pulses of Yb-glass laser were used for “hot” photoluminescence excitation in a diamond plate enriched by blue-emitting N3-centers (zero-phonon line, ZPL, at 415 nm). Photoluminescence spectra acquired in the range of 400–500 nm exhibited wavelength-independent well-resolved ZPL and phonon progression bands, where the involved phonons possessed the only energies of 0.09 eV (LA-phonons) and 0.15 eV (softened LO/TO-phonons), potentially, as a result of a Clemens decay mechanism. Photoluminescence yield in the ZPL and other phonon bands exhibited the power slope of 1.8 at lower energies and ≈1 at higher energies. The transition zone at fluence ∼1014–15 photons/cm2 was related to the saturation of the pumped resonance transition and the slower non-radiative vibrational relaxation to the ZPL-related excited electronic state and the nanosecond spontaneous photoluminescence transition to the ground state. As a result, the absorption cross section σ(370–390 nm) ≈1·10−15 cm2 and concentration [N3] ≈6·1014 cm−3 were determined along with the ZPL absorption cross section σ(415 nm) ≈2.5·10−15 cm2, and the non-radiative vibrational relaxation rate was estimated, providing altogether the crucial information on lasing possibilities in N3-doped diamonds.

Funder

Russian Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3