Affiliation:
1. Columbia University
2. Columbia University Irving Medical Center
Abstract
Optical coherence tomography (OCT) is being investigated in breast cancer diagnostics as a real-time histology evaluation tool. We present a customized deep convolutional neural network (CNN) for classification of breast tissues in OCT B-scans. Images of human breast samples from mastectomies and breast reductions were acquired using a custom ultrahigh-resolution OCT system with 2.72 µm axial resolution and 5.52 µm lateral resolution. The network achieved 96.7% accuracy, 92% sensitivity, and 99.7% specificity on a dataset of 23 patients. The usage of deep learning will be important for the practical integration of OCT into clinical practice.
Funder
National Institutes of Health
Columbia University
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献