Affiliation:
1. The University of Hong Kong
Abstract
As an important inverse imaging problem in diffraction optics, Fourier phase retrieval aims at estimating the latent image of the target object only from the magnitude of its Fourier measurement. Although in real applications alternating methods are widely-used for Fourier phase retrieval considering the constraints in the object and Fourier domains, they need a lot of initial guesses and iterations to achieve reasonable results. In this paper, we show that a proper sensor mask directly attached to the Fourier magnitude can improve the efficiency of the iterative phase retrieval algorithms, such as alternating direction method of multipliers (ADMM). Furthermore, we refer to the learning-based method to determine the sensor mask according to the Fourier measurement, and unrolled ADMM is used for phase retrieval. Numerical results show that our method outperforms other existing methods for the Fourier phase retrieval problem.
Funder
University Grants Committee
University Research Committee, University of Hong Kong
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献