Constellation design of DFT-S-OFDM with dual-mode index modulation in VLC

Author:

Chen ChenORCID,Nie Yungui,Ahmed FaheemORCID,Zeng Zhihong1,Liu Min

Affiliation:

1. The University of Edinburgh

Abstract

In this paper, we for the first time propose a novel partitioning-based constellation design approach for discrete Fourier transform-spread-orthogonal frequency division multiplexing modulation with dual-mode index modulation (DFT-S-OFDM-DM) in visible light communication (VLC) systems. Specifically, two partitioning-based constellation designs, i.e., block-based constellation partitioning and interleaving-based constellation partitioning, are proposed to generate two distinguishable constellation sets for DFT-S-OFDM-DM in VLC, by considering four 8-ary constellations including 8-ary quadrature amplitude modulation (8-QAM), 8-ary phase-shift keying (8-PSK), circular (4,4)-QAM, and circular (7,1)-QAM. The superiority of DFT-S-OFDM-DM using circular (7,1)-QAM constellation with interleaving-based constellation partitioning over other benchmark schemes has been successfully verified by both simulation and experimental results. It is shown by the experimental results that a significant distance extension of 44.6% is obtained by DFT-S-OFDM-DM using circular (7,1)-QAM constellation with interleaving-based constellation partitioning in comparison to DFT-S-OFDM with index modulation achieving the same spectral efficiency of 2.5 bits/s/Hz. It is also demonstrated that the proposed constellation design schemes are also generally applicable to the constellation with an arbitrary shape and an arbitrary size.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Natural Science Foundation of Chongqing

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3