Enhanced imaging with binary circular Dammann Fresnel zone plate

Author:

Anton Stefan R.1,Shabairou NadavORCID,Stanciu Stefan G.1ORCID,Stanciu George A.1ORCID,Zalevsky Zeev

Affiliation:

1. National University of Science and Technology Politehnica Bucharest

Abstract

We introduce a novel approach in optical engineering by combining Dammann gratings with binary Fresnel zone plates to create a unique hybrid optical element with enhanced energetic efficiency of its focal spots. Traditionally, binary Fresnel zone plates focus light at multiple points with varying intensities, while Dammann gratings are renowned for their efficient and uniform light splitting capabilities. Our innovation lies in merging these two elements and generating a binary circular Dammann (varying along the radial direction) Fresnel zone plate that concentrates most of the incident light into a small and desired number of focused points with equal intensities, rather than distributing light’s energy non-equally across multiple points. This novel design significantly enhances the efficiency and precision of light manipulation. It opens new possibilities in applications requiring high-intensity focal points, such as in advanced medical imaging and in accurate scientific measurements. By redefining the conventional roles of these optical elements, our research contributes an advancement to the field, paving the way for innovative solutions in various optical applications.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3