Pressure and temperature dual-parameter optical sensor based on the MIM waveguide structure coupled with two T-shaped cavities

Author:

Zhang Xinyi,Tian HeORCID,Liu Yajie,Song Jiaqi

Abstract

This paper elaborates on the design and simulation of a multifunctional optical sensor that features simultaneous detection of pressure and temperature, which is based on the metal–insulator–metal waveguide structure with two T-shaped resonant cavities. Depending on the simulation findings, pressure and temperature can be measured separately by two T-shaped cavities at different Fano resonance wavelengths. As the pressure applied to the upper T-shaped cavity increases, the resonance wavelength first shifts linearly due to the slight deformation of the cavity, and the maximum pressure sensitivity reaches 12.48 nm/MPa. After the pressure exceeds a threshold, the relationship between pressure and resonance wavelength transforms into a quadratic polynomial. In the lower T-shaped cavity, solid polydimethylsiloxane is sealed as a thermal-sensitive material, effectively preventing material overflow brought on by structural micro-vibration under pressure, and its high thermo-optical coefficient prompts a temperature sensitivity of 0.36 nm/°C. Furthermore, by optimizing the choice of Fano resonances, pressure and temperature can be sensed independently without mutual interference. The designed sensor provides extensive application possibilities for scenarios where multiparameter monitoring is required.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Heilongjiang Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3