Optical properties of particle dispersed coatings with gradient distribution

Author:

Zhai Jinan,Zhang Shangyu1ORCID,Zheng Chong2,Liu Linhua1ORCID

Affiliation:

1. Shandong University

2. Science and Technology on Optical Radiation Laboratory

Abstract

Particle dispersed coatings with gradient distributions, resulting from either gravity or artificial control, are frequently encountered in practical applications. However, most current studies investigating the optical properties of coatings use the uniform model (uniform single layer assumption), overlooking the gradient distribution effects. Given the pervasiveness of gradient distributions and the widespread use of the uniform model, it is imperative to evaluate applicability conditions of the uniform model in practical applications. In this work, we comprehensively investigate the quantitative performance of the uniform model in predicting the infrared optical properties of coatings with gradient distributions of particle volume fraction using the superposition T-matrix method. The results show that the gradient distribution of particle volume fraction has a limited impact on the emissivity properties of TiO2-PDMS coatings in the midwavelength-infrared (MWIR) and long-wavelength-infrared (LWIR) bands, which validates the uniform model for the gradient coatings with weakly scattering dielectric particles. However, the uniform model can yield significant inaccuracies in estimating the emissivity properties of Al-PDMS coatings with gradient distributions in the MWIR and LWIR bands. To accurately estimate the emissivity of such gradient coatings with the scattering metallic particles, meticulous modeling of the particle volume fraction distribution is essential.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3