DNF: diffractive neural field for lensless microscopic imaging

Author:

Zhu Hao1,Liu Zhen1,Zhou You1ORCID,Ma Zhan1,Cao Xun1

Affiliation:

1. Nanjing University

Abstract

Lensless imaging has emerged as a robust means for the observation of microscopic scenes, enabling vast applications like whole-slide imaging, wave-front detection and microfluidic on-chip imaging. Such system captures diffractive measurements in a compact optical setup without the use of optical lens, and then typically applies phase retrieval algorithms to recover the complex field of target object. However existing techniques still suffer from unsatisfactory performance with noticeable reconstruction artifacts especially when the imaging parameter is not well calibrated. Here we propose a novel unsupervised Diffractive Neural Field (DNF) method to accurately characterize the imaging physical process to best reconstruct desired complex field of the target object through very limited measurement snapshots by jointly optimizing the imaging parameter and implicit mapping between spatial coordinates and complex field. Both simulations and experiments reveal the superior performance of proposed method, having > 6 dB PSNR (Peak Signal-to-Noise Ratio) gains on synthetic data quantitatively, and clear qualitative improvement on real-world samples. The proposed DNF also promises attractive prospects in practical applications because of its ultra lightweight complexity (e.g., 50× model size reduction) and plug-to-play advantage (e.g., random measurements with a coarse parameter estimation).

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3