High-order exciton complexes induced by an interlayer carrier transfer in 2D van der Waals heterostructures

Author:

Sui Yizhen1,Cheng Xiangai1,Liu Qirui1,Tang Yuxiang,Xu Zhongjie1,Wei Ke

Affiliation:

1. National University of Defense Technology

Abstract

High-order correlated excitonic states, such as biexciton, charged biexciton, and polaron, hold a promising platform in contemporary quantum and nonlinear optics due to their large Bohr radii and thus strong nonlinear interactions. The recently found 2D TMDs further give such excitonic states additional valley properties, with bound state of excitons in opposite valleys in momentum spaces. Despite great efforts that have been made on emission properties of excitonic states, their absorption features, especially the ultrafast absorption dynamics, are rarely reported. Here, we reported the enhanced optical absorption of the high-order charged-excitonic states in monolayer WS2, including singlet, triplet, and semidark trions (3-particle state), and charged biexcitons (5-particle state), by utilizing the interlayer charge transfer-induced photo-doping effect in the graphene-WS2 heterostructure. Depending on recombination rates of doping electrons, absorption intensities of charged complexes exhibit ultrafast decay dynamics, with lifetimes of several picoseconds. Due to many-body interaction, both increasing pump intensity and lattice temperature can broaden these fine excitonic absorption peaks and even reverse the shape of the transient absorption spectrum.

Funder

National Natural Science Foundation of China

The Scientific Researches Foundation of National University of Defense Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3