Abstract
A φ-optical frequency domain reflectometry (OFDR) strain sensor with a submillimeter-spatial-resolution of 233 µm is demonstrated by using femtosecond laser induced permanent scatters (PSs) in a standard single-mode fiber (SMF). The PSs-inscribed SMF, i.e., strain sensor, with an interval of 233 µm exhibited a Rayleigh backscattering intensity (RBS) enhancement of 26 dB and insertion loss of 0.6 dB. A novel, to the best of our knowledge, method, i.e., PSs-assisted φ-OFDR, was proposed to demodulate the strain distribution based on the extracted phase difference of P- and S-polarized RBS signal. The maximum measurable strain was up to 1400 µε at a spatial resolution of 233 µm.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Science, Technology and Innovation Commission of Shenzhen Municipality
Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things
Subject
Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献