Semi-spontaneous temporal evolution of relief/fluorescence hybrid gratings for holographic encryption

Author:

Tao Yuxin1,Liu Hongfang1,Wang Xiuli2,Liu Zhong3,Li Xin1,Miao Jingying1,Fu Shencheng1ORCID,Zhang Xintong1ORCID

Affiliation:

1. Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University)

2. Northeast Normal University

3. Middle School Attached to Northeast Normal University

Abstract

Holographic systems can reconstruct the entire wavefront of light which are developed as an excellent platform of information encryption. Although holography has utilized multiple modulation dimensions, little attention is given to its combination with fluorescence emitting. Herein, we propose a semi-spontaneous time-dependent encryption strategy of hybrid holographic fringes with surface relief and fluorescent emission mediated by a plasmonic polymer doped with fluorescent dyes. It is found that the two kinds of optical characteristic regions exhibit unique temporal evolution from the overlapped mode to the staggered one. The mode switching is closely related to the strong quenching effect of gold ions and nanoparticles which are dominant at the early and later recording stages, respectively. Thus, the real and deceptive information are recorded at different holographic writing periods. High-secret information of texts or images is constructed by the array of different sets of holographic fringes and is identified by comparing the dual-channel results of confocal laser scanning microscopes. This work puts a bright way to dynamic holographic encryption.

Funder

Natural Science Foundation of Jilin Province

Education Department of Jilin Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3