Affiliation:
1. Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University)
2. Northeast Normal University
3. Middle School Attached to Northeast Normal University
Abstract
Holographic systems can reconstruct the entire wavefront of light which are developed as an excellent platform of information encryption. Although holography has utilized multiple modulation dimensions, little attention is given to its combination with fluorescence emitting. Herein, we propose a semi-spontaneous time-dependent encryption strategy of hybrid holographic fringes with surface relief and fluorescent emission mediated by a plasmonic polymer doped with fluorescent dyes. It is found that the two kinds of optical characteristic regions exhibit unique temporal evolution from the overlapped mode to the staggered one. The mode switching is closely related to the strong quenching effect of gold ions and nanoparticles which are dominant at the early and later recording stages, respectively. Thus, the real and deceptive information are recorded at different holographic writing periods. High-secret information of texts or images is constructed by the array of different sets of holographic fringes and is identified by comparing the dual-channel results of confocal laser scanning microscopes. This work puts a bright way to dynamic holographic encryption.
Funder
Natural Science Foundation of Jilin Province
Education Department of Jilin Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics