Cancer Research Trends in Traditional Korean Medical Journals since 2000 - Topic Modeling Using Latent Dirichlet Allocation and Keyword Network Analysis

Author:

Bae Kyeore

Abstract

Objectives: The aim of this study is to analyze cancer research trends in traditional Korean medical journals indexed in the Korea Citation Index since 2000.Methods: Cancer research papers published in traditional Korean medical journals were searched in databases from inception to October 2022. The numbers of publications by journal and by year were descriptively assessed. After natural language processing, topic modeling (based on Latent Dirichlet allocation) and keyword network analysis were conducted.Results: This research trend analysis involved 1,265 papers. Six topics were identified by topic modeling: case reports on symptom management, literature reviews, experiments on apoptosis, herbal extract treatments of breast carcinoma cell lines, anti-proliferative effects of herbal extracts, and anti-tumor effects. Keyword network analysis found that the effects of herbal medicine were assessed in clinical and experimental studies, while acupuncture was mainly mentioned in clinical reports.Conclusions: Cancer research papers in traditional Korean medical journals have contributed to evidence-based medicine. Further experimental studies are needed to elucidate the effects of on different hallmarks of cancer. Rigorous clinical studies are needed to support clinical guidelines.

Publisher

The Society of Internal Korean Medicine

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3