YSA Sınıflandırma Modellerinde Korelasyon-Hipotez Testi Tabanlı Filtreleme Yoluyla Girdi Seçimi

Author:

Uluskan Meryem1ORCID,Şenli Halil Derya1ORCID

Affiliation:

1. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

Abstract

Bu çalışmada başlıca amaç, yüksek miktardaki olası girdi değişken sayısını, bu değişkenler arasındaki korelasyonları göz önünde bulundurarak azaltarak sınıflandırma performansı yüksek Yapay Sinir Ağı (YSA) modelleri elde etmektir. Bunu gerçekleştirmek için 30 adet olası girdi değişkeni olan bir meme kanseri teşhis problemi ele alınmış ve önerilen korelasyon-hipotez testi tabanlı bir filtreleme yöntemi ile girdi değişken sayısı azaltılarak YSA modeli oluşturulmuştur. Önerilen modelin etkinliği farklı girdi değişken setlerini içeren altı YSA modeli ile karşılaştırılmıştır. Bu altı model, tüm girdi değişkenlerini içeren modelle, model tabanlı seçim yöntemlerinden aşamalı regresyon, ileri doğru seçim ve geriye doğru eleme yöntemleri ile seçilmiş girdi değişkenleriyle elde edilmiş olan modelleri kapsamaktadır. Modeller oluşturulurken veri seti farklı eğitim-test yüzdelerine bölünmüş ve gizli katmanda farklı nöron sayıları denenmiştir. Modellerin sınıflandırma performanslarını karşılaştırmak için doğruluk, duyarlılık, kesinlik ve F1-skoru ölçütleri kullanılmıştır. Sonuç olarak, önerilen korelasyon tabanlı filtreleme yöntemi ile seçilen dokuz girdi değişkenli modeller için doğruluk değeri 0,93-0,95 arasında bulunmuş olup bu değer belirgin şekilde iyidir. Duyarlılık değeri modelimiz için 0,85-0,88 aralığında ve yeterli düzeyde elde edilmiştir. Kesinlik değerinin önerilen modelimiz için 0,98-0,988 aralığında ve çok yüksek olduğu belirlenmiştir. Bu çalışmada önerilen modelin F1-skoru 0,907-0,931 arasında olup yeterince yüksek bir değere sahiptir. Karşılaştırılan modeller içinde önerilen dokuz girdi değişkenli modelin değişken sayısının en düşük olduğu, yani en sade model olduğu ve gizli katmanda sadece 10 nöronla bile iyi bir sınıflandırma performansına sahip olduğu göz önüne alındığında bu yöntemin özellikle model tabanlı yöntemlere kıyasla kısa sürede ve düşük maliyetlerle anlaşılır sınıflandırma modelleri oluşturmada verimli olacağı belirlenmiştir.

Publisher

Nicel Bilimler Dergisi based at ESOGU Istatistik Danismanlik Uygulama ve Arastirma Merkezi

Reference39 articles.

1. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A. and Arshad, H. (2018), State-of-the-art in artificial neural network applications: A survey, Heliyon, 4(11).

2. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A. and San Tan, R. (2017), A deep convolutional neural network model to classify heartbeats, Computers in Biology and Medicine, 89, 389-396.

3. Alpaydin, E. (2020), Introduction to Machine Learning, MIT Press, Cambridge, Massachusetts, ABD.

4. Alshanbari, E., Alamri, H., Alzahrani, W. and Alghamdi, M. (2021), Breast cancer classification using convolutional neural network, International Journal of Computer Science and Network Security, 21(6), 101-106.

5. Arı, A. and Hanbay, D. (2019), Tumor detection in MR ımages of regional convolutional neural networks, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), 1395-1408.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3