Myelofibrosis Models: Literature Review and Own Data

Author:

Silyutina A.A.1,Gin I.I.1,Matyukhina N.M.1,Balayan E.N.2,Butylin Pavel Andreevich1

Affiliation:

1. VA Almazov Federal North-West Medical Research Center

2. University Hospital Carl Gustav Carus Dresden

Abstract

Background & Aims. Chronic myeloproliferative disorders typically develop during a long latent period, and it complicates the study of the mechanism of its pathogenesis. Observations from the clinical practice should be confirmed by experiments. The mechanisms of oncological transformation related to mutations associated with chronic myeloproliferative diseases were confirmed in transgene animal models. Biological models permitted to determine a complex nature of myelofibrosis. However, studies of the cellular mechanisms of myelofibrosis require new models. This paper presents a review of published models of myeloproliferative disorders, mainly, primary myelofibrosis, and results of studies of a new cell line with expression of JAK2 V617F. The aim of this study is to create a new cell line with expression of transforming JAK2 V617F mutation in acute monocytic leukemia THP-1 cells. Methods. Transgenic cell lines were created on the basis of monocytic leukemia THP-1 cell line that can differentiate into macrophages. Direct mutagenesis was used to cause V617F mutation. Two cell lines were created: one with JAK2 expression with V617F mutation, the other with wild type JAK2. Results. Both transgenic lines were characterized by increased JAK2 expression as compared to non-modified cells. In routine cultivation, transgenic THP-1 cells retained the morphology of monocytes. After treatment with phorbol ester, THP-1 differentiated into macrophages and become adherent to culture plastic. Adherent cells demonstrated the variety of shapes: some of them were spherical, the other ones had pseudopodia. No significant differences in viability of cells were observed. However, macrophages expressing mutant JAK2 and overexpressing the wild type JAK2 demonstrated a tendency to decreased amount unlivable cells during cultivation. Conclusion. The obtained cell model can be used for estimating the influence of JAK2 V617F mutation on pro- and antifibrotic potential of macrophages that can help to investigate the pathogenetic role of macrophages in myelofibrosis development. In addition, this model can help to develop novel methods of therapy and diagnostics of primary and secondary myelofibrosis.

Publisher

Practical Medicine Publishing House

Subject

Oncology,Hematology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3