Abstract
In this paper, we employ the concept of operator means as well as some operator techniques to establish new operator Bellman and operator H\"{o}lder type inequalities. Among other results, it is shown that if $\mathbf{A}=(A_t)_{t\in \Omega}$ and $\mathbf{B}=(B_t)_{t\in \Omega}$ are continuous fields of positive invertible operators in a unital $C^*$-algebra ${\mathscr A}$ such that $\int_{\Omega}A_t\,d\mu(t)\leq I_{\mathscr A}$ and $\int_{\Omega}B_t\,d\mu(t)\leq I_{\mathscr A}$, and if $\omega_f$ is an arbitrary operator mean with the representing function $f$, then
\begin{align*}
\left(I_{\mathscr A}-\int_{\Omega}(A_t \omega_f B_t)\,d\mu(t)\right)^p
\geq\left(I_{\mathscr A}-\int_{\Omega}A_t\,d\mu(t)\right) \omega_{f^p}\left(I_{\mathscr A}-\int_{\Omega}B_t\,d\mu(t)\right)
\end{align*}
for all $0 < p \leq 1$, which is an extension of the operator Bellman inequality.
Publisher
Constructive Mathematical Analysis
Reference25 articles.
1. J. Aczél: Some general methods in the theory of functional equations in one variable, New applications of functional equations (Russian), Uspehi Mat. Nauk (N.S.) 11, 3 (69) (1956), 3–68.
2. M. Bakherad: Some reversed and refined Callebaut inequalities via Kontorovich constant, Bull. Malays. Math. Sci. Soc., 41 (2) (2018), 765–777.
3. M. Bakherad, A. Morassaei: Some operator Bellman type inequalities, Indag. Math. (N.S.), 26 (4) (2015), 646–659.
4. M. Bakherad, A. Morassaei: Some extensions of the operator entropy type inequalities, Linear Multilinear Algebra, 67 (5) (2019), 871–885.
5. E. F. Beckenbach, R. Bellman: Inequalities, Springer Verlag, Berlin (1971).