1. \bibitem{Ba} {S. \ Banach}: \textit{Sur les op\'erations dans les ensembles abstraits et leur application aux \'equations int\'egrales}. Fund. Math., \textbf{3} (1922), 133-181.
2. \bibitem{JSV} {M. \ Jleli, B. \ Samet {\rm and} C. \ Vetro}: \textit{Fixed point theory in partial metric spaces via $\varphi$-fixed point's concept in metric spaces}, J. Inequal. Appl., \textbf{2014}:426 (2014), 9 pp.
\bibitem{Lau} A. T.-M. \ Lau {\rm and} W. \ Takahashi: \textit{Invariant means and fixed point properties for nonexpansive representations of topological semigroups}. Topol. Methods Nonlinear Anal., \textbf{5} (1995), 39-57.
\bibitem{Lau1} {A. T.-M. \ Lau {\rm and} Y. \ Zhang}: \textit{Fixed point properties of semigroups of non-expansive mappings}. J. Funct. Anal., \textbf{254} (2008), 2534-2554.
\bibitem{Lau2} {A. T.-M. \ Lau {\rm and} Y. \ Zhang}: \textit{Fixed point properties for semigroups of nonlinear mappings and amenability}. J. Funct. Anal., \textbf{263} (2012), 2949-2977.
\bibitem{RRZ} {D. \ Reem, S. \ Reich {\rm and} A. J. \ Zaslavski}: \emph{Two Results in Metric Fixed Point Theory}. J. Fixed Point Theory Appl., \textbf{1} (2007), 149-157.
\bibitem{RZ} {S. \ Reich {\rm and} A. J. \ Zaslavski}: \emph{A Fixed Point Theorem for Matkowski Contractions}. Fixed Point Theory, \textbf{8} (2007), 303-307.
\bibitem{RZ1} {S. \ Reich {\rm and} A. J. \ Zaslavski}: \emph{A Note on Rakotch contraction}. Fixed Point Theory, \textbf{9} (2008), 267-273.
\bibitem{RPP} I. A. \ Rus, A. \ Petru\c{s}el {\rm and} G. \ Petru\c{s}el: \emph{Fixed Point Theory}. Cluj University Press, Cluj-Napoca (2008).
\bibitem{SVV} {B. \ Samet, C. \ Vetro {\rm and} F. \ Vetro}: \textit{From metric spaces to partial metric spaces}. Fixed Point Theory Appl., \textbf{2013}:5 (2013), 11 pp.
\bibitem{VV} {C. \ Vetro {\rm and} F. \ Vetro}: \textit{Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results}. Topology Appl., \textbf{164} (2014), 125-137.
\bibitem{W} {D. \ Wardowski}: \textit{Fixed points of a new type of contractive mappings in complete metric spaces}. Fixed Point Theory Appl., \textbf{2012}:94 (2012), 6 pp.