A fixed-point problem with mixed-type contractive condition

Author:

VETRO Calogero

Publisher

Constructive Mathematical Analysis

Subject

Applied Mathematics,Numerical Analysis,Analysis

Reference2 articles.

1. \bibitem{Ba} {S. \ Banach}: \textit{Sur les op\'erations dans les ensembles abstraits et leur application aux \'equations int\'egrales}. Fund. Math., \textbf{3} (1922), 133-181.

2. \bibitem{JSV} {M. \ Jleli, B. \ Samet {\rm and} C. \ Vetro}: \textit{Fixed point theory in partial metric spaces via $\varphi$-fixed point's concept in metric spaces}, J. Inequal. Appl., \textbf{2014}:426 (2014), 9 pp. \bibitem{Lau} A. T.-M. \ Lau {\rm and} W. \ Takahashi: \textit{Invariant means and fixed point properties for nonexpansive representations of topological semigroups}. Topol. Methods Nonlinear Anal., \textbf{5} (1995), 39-57. \bibitem{Lau1} {A. T.-M. \ Lau {\rm and} Y. \ Zhang}: \textit{Fixed point properties of semigroups of non-expansive mappings}. J. Funct. Anal., \textbf{254} (2008), 2534-2554. \bibitem{Lau2} {A. T.-M. \ Lau {\rm and} Y. \ Zhang}: \textit{Fixed point properties for semigroups of nonlinear mappings and amenability}. J. Funct. Anal., \textbf{263} (2012), 2949-2977. \bibitem{RRZ} {D. \ Reem, S. \ Reich {\rm and} A. J. \ Zaslavski}: \emph{Two Results in Metric Fixed Point Theory}. J. Fixed Point Theory Appl., \textbf{1} (2007), 149-157. \bibitem{RZ} {S. \ Reich {\rm and} A. J. \ Zaslavski}: \emph{A Fixed Point Theorem for Matkowski Contractions}. Fixed Point Theory, \textbf{8} (2007), 303-307. \bibitem{RZ1} {S. \ Reich {\rm and} A. J. \ Zaslavski}: \emph{A Note on Rakotch contraction}. Fixed Point Theory, \textbf{9} (2008), 267-273. \bibitem{RPP} I. A. \ Rus, A. \ Petru\c{s}el {\rm and} G. \ Petru\c{s}el: \emph{Fixed Point Theory}. Cluj University Press, Cluj-Napoca (2008). \bibitem{SVV} {B. \ Samet, C. \ Vetro {\rm and} F. \ Vetro}: \textit{From metric spaces to partial metric spaces}. Fixed Point Theory Appl., \textbf{2013}:5 (2013), 11 pp. \bibitem{VV} {C. \ Vetro {\rm and} F. \ Vetro}: \textit{Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results}. Topology Appl., \textbf{164} (2014), 125-137. \bibitem{W} {D. \ Wardowski}: \textit{Fixed points of a new type of contractive mappings in complete metric spaces}. Fixed Point Theory Appl., \textbf{2012}:94 (2012), 6 pp.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Common Fixed Point Results for Fuzzy F-Contractive Mappings in a Dislocated Metric Spaces With Application;Qeios;2024-07-10

2. Common Fixed Point Results for w-α-Distance;Muş Alparslan Üniversitesi Fen Bilimleri Dergisi;2024-07-01

3. Some recent and new fixed point results on orthogonal metric-like space;Constructive Mathematical Analysis;2023-09-15

4. Some fixed point results with integral type (H, ψ)F -contraction;Annals of the University of Craiova Mathematics and Computer Science Series;2023-06-30

5. Coupled fixed point theorems under new coupled implicit relation in Hilbert spaces;Demonstratio Mathematica;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3