A NEW LOOK AT BANKRUPTCY MODELS

Author:

Kuběnka Michal,Čapek Jan,Sejkora František

Abstract

New models for bankruptcy prediction are constantly being formulated and tested against the current ones and current ones are tested to assess their current accuracy and to allow users to determine the reliability of the results when using the model. These models use accounting information as input data. Accounting systems, for example, US GAAP, or IFRS, contain rules that may be applied differently from one company to another without being breached. This leads to input data uncertainty. Likewise, uncertainties may arise due to errors in recording and transcribing input data or in translating the values of assets, equity or liabilities in foreign currencies. This research was focused on the effect of entry data uncertainty on models’ ability to accurately predict bankruptcy. The initial assumption was that raising the number of input values would increase the error rate probability in entry data, thus also heightening the uncertainty of the results in the given bankruptcy prediction model. The data set of tested companies contained 1,220 non-bankrupt and 285 bankrupt Czech companies. The tested models – Z’ score, Model 1, and Ycz – were applied to this sample, and in all cases, the resulting accuracy was lower than the accuracy declared by their authors. A procedure was created for the inclusion of entry data uncertainty in the practical application of a model. This procedure consists of changing the limit value of the model that separates bankrupt and non-bankrupt companies to an interval that “absorbs” such uncertainties. The model cannot classify the companies in this interval. The research shows that the inclusion of uncertainties in entry data further reduces their accuracy. However, the reduction in accuracy between the individual models varies significantly from 2.2% to 39.4% for bankrupt companies, and from 3.5% to 91.8% for non-bankrupt companies, respectively. The analysis of the entry data uncertainty effect shows the need to create models with high precision and minimum of input values because the model error rate grows the higher their number. The findings of this research can be applied in the creation of new models for predicting bankruptcy not only in the Central Europe but globally.

Publisher

Technical University of Liberec

Subject

Strategy and Management,General Economics, Econometrics and Finance,Business and International Management

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3