MULTI-CRITERIA NUMERICAL OPTIMIZATION OF MECHANICAL PROPERTIES IN ULTRASONIC WELDING PROCESS PARAMETERS OF PVC-COATED HYBRID TEXTILES FOR WEATHER PROTECTION

Author:

HUSSEN MUKTAR SEID,KYOSEV YORDAN,PIETSCH KATHRIN,BOLL JESSICA,KABISH ABERA KECHI

Abstract

A series of research was carried out to determine the correlation between ultrasonic welding process parameters and weld seam mechanical properties. However, multi-objective numerical optimization of coated hybrid textiles for weather protection has not been addressed. To ensure a comprehensive evaluation of ultrasonic weld seams, the research investigates the optimal solution of the multi-objective function of ultrasonic welding process parameters and formulates a single criteria objective function. Lapped and superimposed types of seams were applied based on 33 factorial designs of experiments for 6 and 12 mm welding widths. Single-criteria objective functions instead of three independent problems were developed as a generalized utility function. A single-criteria optimization method was introduced through predetermined weight and normalization within the range of acceptable/unacceptable values. Numerical and graphical optimization methods were also applied to determine possible optimal solutions through generalized utility functions. The best optimal value of the generalized utility function (0.670425 and 0.944374) was attained at welding speed (2 and 2.01564 m/min), power (93.756 and 117.973 W), and pressure force (198.803 and 239.756 N) of 6 and 12 mm welding widths, respectively. The acceptable range of satisfactory values was determined for the roof and wall of awnings and camping tents through standard, in which seam performance level indicated. Nonlinear quadratic numerical models were formulated to estimate the generalized utility function, and their results were close to the regressed diagonal line against the actual points. The statistical analysis was shown a statistically significant effect of welding process parameters on the generalized utility function.

Publisher

Technical University of Liberec

Subject

Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous),Business and International Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3