A Machine Learning Approach to the Observation Operator for Satellite Radiance Data Assimilation
Author:
Affiliation:
1. Data Assimilation Research Team, RIKEN Center for Computational Science, Kobe, Japan
2. Prediction Science Laboratory, RIKEN Cluster for Pioneering Research, Kobe, Japan
Publisher
Meteorological Society of Japan
Subject
Atmospheric Science
Link
https://www.jstage.jst.go.jp/article/jmsj/101/1/101_2023-005/_pdf
Reference35 articles.
1. Alvarado, M. J., V. H. Payne, E. J. Mlawer, G. Uymin, M. W. Shephard, K. E. Cady-Pereira, J. S. Delamere, and J.-L. Moncet, 2013: Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: Recent updates evaluated with IASI case studies. Atmos. Chem. Phys., 13, 6687-6711.
2. Bengio, Y., 2012: Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade. Montavon, G., G. B. Orr, and K. R Müller (eds.), Lecture Notes in Computer Science, vol. 7700, Springer, Berlin, Heidelberg, 437-478.
3. Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res.: Atmos., 118, 12970-12980.
4. Boukabara, S. A., V. Krasnopolsky, S. G. Penny, J. Q. Stewart, A. McGovern, D. Hall, J. E. Ten Hoeve, J. Hickey, H.-L. A. Huang, J. K. Williams, K. Ide, P. Tissot, S. E. Haupt, K. S. Casey, N. Oza, A. J. Geer, E. S. Maddy, and R. N. Hoffman, 2021: Outlook for exploiting artificial intelligence in the Earth and environmental sciences. Bull. Amer. Meteor. Soc., 102, E1016-E1032.
5. Chantry, M., S. Hatfield, P. Dueben, I. Polichtchouk, and T. Palmer, 2021: Machine learning emulation of gravity wave drag in numerical weather forecasting. J. Adv. Model. Earth Syst., 13, e2021MS002477, doi:10.1029/2021MS002477.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Machine Learning Augmented Data Assimilation Method for High‐Resolution Observations;Journal of Advances in Modeling Earth Systems;2024-01
2. Inferring unknown unknowns: Regularized bias-aware ensemble Kalman filter;Computer Methods in Applied Mechanics and Engineering;2024-01
3. Machine Learning With Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review;IEEE/CAA Journal of Automatica Sinica;2023-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3