Author:
Qiu Jiaheng,Wong Weng Kee
Abstract
The continuation-ratio (CR) model is frequently used in dose response studies to model a three-category outcome as the dose levels vary. Design issues for a CR model defined on an unrestricted dose interval have been discussed for estimating model parameters or a selected function of the model parameters. This paper uses metaheuristics to address design issues for a CR model defined on any compact dose interval when there are one or more objectives in the study and some are more important than others. Specifically, we use an exemplary nature-inspired metaheuristic algorithm called particle swarm optimization (PSO) to find locally optimal designs for estimating a few interesting functions of the model parameters, such as the most effective dose ($MED$), the maximum tolerated dose ($MTD$) and for estimating all parameters in a CR model. We demonstrate that PSO can efficiently find locally multiple-objective optimal designs for a CR model on various dose intervals and a small simulation study shows it tends to outperform the popular deterministic cocktail algorithm (CA) and another competitive metaheuristic algorithm called differential evolutionary (DE). We also discuss hybrid algorithms and their flexible applications to design early Phase 2 trials or tackle biomedical problems, such as different strategies for handling the recent pandemic.
Publisher
New England Statistical Society
Reference58 articles.
1. A Multi-objective optimization method for hospital admission problem – a case study on COVID-19 patients;Algorithms,2021
2. Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition;IEEE Congress on Evolutionary Computation,2007
3. A segmented algorithm for simulated annealing;Statistics & Computing,1992
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献