Nature-inspired Metaheuristics for finding Optimal Designs for the Continuation-Ratio Models

Author:

Qiu Jiaheng,Wong Weng Kee

Abstract

The continuation-ratio (CR) model is frequently used in dose response studies to model a three-category outcome as the dose levels vary. Design issues for a CR model defined on an unrestricted dose interval have been discussed for estimating model parameters or a selected function of the model parameters. This paper uses metaheuristics to address design issues for a CR model defined on any compact dose interval when there are one or more objectives in the study and some are more important than others. Specifically, we use an exemplary nature-inspired metaheuristic algorithm called particle swarm optimization (PSO) to find locally optimal designs for estimating a few interesting functions of the model parameters, such as the most effective dose ($MED$), the maximum tolerated dose ($MTD$) and for estimating all parameters in a CR model. We demonstrate that PSO can efficiently find locally multiple-objective optimal designs for a CR model on various dose intervals and a small simulation study shows it tends to outperform the popular deterministic cocktail algorithm (CA) and another competitive metaheuristic algorithm called differential evolutionary (DE). We also discuss hybrid algorithms and their flexible applications to design early Phase 2 trials or tackle biomedical problems, such as different strategies for handling the recent pandemic.

Publisher

New England Statistical Society

Reference58 articles.

1. A Multi-objective optimization method for hospital admission problem – a case study on COVID-19 patients;Algorithms,2021

2. Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition;IEEE Congress on Evolutionary Computation,2007

3. A segmented algorithm for simulated annealing;Statistics & Computing,1992

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3