Sparse Estimation in Finite Mixture of Accelerated Failure Time and Mixture of Regression Models with R Package fmrs

Author:

Shokoohi FarhadORCID

Abstract

Variable selection in large-dimensional data has been extensively studied in different settings over the past decades. In a recent article, Shokoohi et. al. [29, DOI:10.1214/18-AOAS1198] proposed a method for variable selection in finite mixture of accelerated failure time regression models for studies on time-to-event data to capture heterogeneity within the population and account for censoring. In this paper, we introduce the fmrs package, which implements the variable selection methodology for such models. Furthermore, as a byproduct, the fmrs package facilitates variable selection in finite mixture regression models. The package also incorporates a tuning parameter selection mechanism based on component-wise bic. Commonly used penalties, such as Least Absolute Shrinkage and Selection Operator, and Smoothly Clipped Absolute Deviation, are integrated into fmrs. Additionally, the package offers an option for non-mixture regression models. The C language is chosen to boost the optimization speed. We provide an overview of the fmrs principles and the strategies employed for optimization. Hands-on illustrations are presented to help users get acquainted with fmrs. Finally, we apply fmrs to a lung cancer dataset and observe that a two-component mixture model reveals a subgroup with a more aggressive form of the disease, displaying a lower survival time.

Publisher

New England Statistical Society

Reference33 articles.

1. mixtools: An R Package for Analyzing Finite Mixture Models;Journal of Statistical Software,2009

2. Valid post-selection inference;The Annals of Statistics,2013

3. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models;Computational Statistics & Data Analysis,2003

4. GMCM: Unsupervised Clustering and Meta-Analysis Using Gaussian Mixture Copula Models;Journal of Statistical Software,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3