Gamma-Minimax Wavelet Shrinkage for Signals with Low SNR

Author:

Vimalajeewa Dixon,DasGupta Anirban,Ruggeri Fabrizio,Vidakovic Brani

Abstract

In this paper, we propose a method for wavelet denoising of signals contaminated with Gaussian noise when prior information about the ${L^{2}}$-energy of the signal is available. Assuming the independence model, according to which the wavelet coefficients are treated individually, we propose simple, level-dependent shrinkage rules that turn out to be Γ-minimax for a suitable class of priors. The proposed methodology is particularly well suited in denoising tasks when the signal-to-noise ratio is low, which is illustrated by simulations on a battery of some standard test functions. Comparison to some commonly used wavelet shrinkage methods is provided.

Publisher

New England Statistical Society

Reference34 articles.

1. Empirical Bayes approach to block wavelet function estimation;Computational Statistics & Data Analysis,2002

2. Wavelet approximation of a function from samples affected by noise;Rev. Roumanie & Mathematics with Applications,1997

3. Γ-minimax wavelet shrinkage: A robust incorporation of information about energy of a signal in denoising applications;Statistica Sinica,2004

4. Wavelet estimators in nonparametric regression: a comparative simulation study;Journal of Statistical Software,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial. Modern Bayesian Methods with Applications in Data Science;The New England Journal of Statistics in Data Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3