Author:
Porwal Anupreet,Raftery Adrian E.
Abstract
Bayesian model averaging (BMA) provides a coherent way to account for model uncertainty in statistical inference tasks. BMA requires specification of model space priors and parameter space priors. In this article we focus on comparing different model space priors in the presence of model uncertainty. We consider eight reference model space priors used in the literature and three adaptive parameter priors recommended by Porwal and Raftery [37]. We assess the performance of these combinations of prior specifications for variable selection in linear regression models for the statistical tasks of parameter estimation, interval estimation, inference, point and interval prediction. We carry out an extensive simulation study based on 14 real datasets representing a range of situations encountered in practice. We found that beta-binomial model space priors specified in terms of the prior probability of model size performed best on average across various statistical tasks and datasets, outperforming priors that were uniform across models. Recently proposed complexity priors performed relatively poorly.
Publisher
New England Statistical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献